Recently I have been exploring PandasAI to learn how to create RAGs.
Some people say that OpenAI + LangChain is the way, is it right?
That’s all via code.
Found these interesting projects to create ChatBots through UI:
Tool | Description | License Type |
---|---|---|
LangFlow | Low Code App Builder for RAG & Multi-Agent AI | MIT❤️ |
BotPress | Conversational AI platform for building bots | AGPL-3.0✅ |
Typebot | Conversational app builder with a visual interface | AGPLv3 ✅ |
FlowiseAI | A UI for LangChain (JS) | Apache v2 ✅ |
ChatWoot | Open-source customer engagement suite | Mixed MIT License ❗ |
Let’s make LangFlow work for x86 and ARM64 and compare it with other ChatBots
Open Source Chatbots
Let’s see how to use some of these ChatBot Tools step by step
The LangFlow Project
LangFlow uses LangChain Python under the hood and allow us to quickly prototype AI ChatBots:
The LangFlow Project details:
- https://github.com/langflow-ai/langflow - MIT Licensed ❤️!
- https://docs.langflow.org/getting-started-installation
A visual framework for building multi-agent and RAG applications. Fully customizable, model and vector store agnostic. For the friends - a UI for LangChain (Py)
- In a rush?
- Use Langflow with Docker with their Container Image: https://hub.docker.com/r/langflowai/langflow
docker run -it --rm -p 7860:7860 langflowai/langflow:latest
#docker run -d -p 7860:7860 langflowai/langflow:latest
LangFlow is ready at
localhost:7860
You will be able to embed the LangFlow’s Flow at your web with a Chat Widget:
<script src="https://cdn.jsdelivr.net/gh/logspace-ai/[email protected]/dist/build/static/js/bundle.min.js"></script>
<langflow-chat
window_title="(Hello, F/OSS!)"
flow_id="some-flow-id"
host_url="http://localhost:7860">
</langflow-chat>
⛓️ Langflow is a visual framework for building multi-agent and RAG applications. It’s open-source, Python-powered, fully customizable, model and vector store agnostic.
SelfHost LangFlow with Docker⏬
- Use LangFlow Docker Image (working for x86 at the moment of writing)
podman run -it --rm -p 7860:7860 langflowai/langflow:latest
The Docker-Compose for LangFlow with PostGres DB:
version: "3.8"
services:
langflow:
image: langflowai/langflow:latest
ports:
- "7860:7860"
depends_on:
- postgres
environment:
- LANGFLOW_DATABASE_URL=postgresql://langflow:langflow@postgres:5432/langflow
# This variable defines where the logs, file storage, monitor data and secret keys are stored.
volumes:
- langflow-data:/app/langflow
postgres:
image: postgres:16
environment:
POSTGRES_USER: langflow
POSTGRES_PASSWORD: langflow
POSTGRES_DB: langflow
ports:
- "5432:5432"
volumes:
- langflow-postgres:/var/lib/postgresql/data
volumes:
langflow-postgres:
langflow-data:
SelfHosting LangFlow
Build your own LangFlow Container Image and expose it with Cloudflare Tunnels:
Create LangFlow Docker Image for ARM64 ⏬
At this moment, they have released the LangFlow version 1.0.12, which you can place inside a container image:
git clone https://github.com/langflow-ai/langflow
cd langflow
docker build -t langflow -f ./docker/build_and_push.Dockerfile .
#podman run -it --rm -p 7860:7860 langflowai/langflow:latest #out of the box image
And then when running it…
docker run -it --rm -p 7860:7860 langflow:latest
#docker run -d -p 7860:7860 langflowai/langflow:latest
I had this error: /app/.venv/bin/python: No module named langflow.__main__; 'langflow' is a package and cannot be directly executed
The Docker-Compose for LangFlow together with DB for ARM64: with the just built the langflow:latest
container image
version: "3.8"
services:
langflow:
image: langflow #langflowai/langflow:latest
container_name: langflow
ports:
- "7860:7860"
depends_on:
- postgres
environment:
- LANGFLOW_DATABASE_URL=postgresql://langflow:langflow@postgres:5432/langflow
# This variable defines where the logs, file storage, monitor data and secret keys are stored.
volumes:
- langflow-data:/app/langflow
networks:
- cloudflare_tunnel
postgres:
image: postgres:16
environment:
POSTGRES_USER: langflow
POSTGRES_PASSWORD: langflow
POSTGRES_DB: langflow
ports:
- "5432:5432"
volumes:
- langflow-postgres:/var/lib/postgresql/data
networks:
- cloudflare_tunnel
# - nginx_default
restart: always
networks:
cloudflare_tunnel:
external: true
# nginx_default:
# external: true
volumes:
langflow-postgres:
langflow-data:
Quickly checking how LangFlow works with Python ⏬
python -m venv langflow #create the venv (python3 if you are in mac/linux)
langflow\Scripts\activate #activate venv (windows)
source langflow/bin/activate #(linux)
pip install langflow #https://pypi.org/project/langflow/ #--pre --force-reinstall
#langflow run
#python -m langflow run
#deactivate #when you are done
LangFlow With Python ⏬
Acces LangFlow at localhost:7860
And LangFlow will be available at:
http://127.0.0.1:7860
LangFlow with OpenAI API Key ⏬
How to Embed LangFlow
You will get a MIT Licensed Widget on your Page
Botpress
- The Botpress Official Site - Botpress | AI Chatbot Platform
- The Botpress Source Code at Github
- License: MIT ❤️
The all-in-one platform for delivering ChatBots powered by the latest LLMs.
How to Setup Botpress ⏬
docker run -d --name=botpress -p 3000:3000 botpress/server
The open-source hub to build & deploy GPT/LLM Agents ⚡️
TypeBot
- https://docs.typebot.io/self-hosting/deploy/docker
- https://github.com/baptisteArno/typebot.io - AGPLv3
How to Setup TypeBot Step By Step ⏬
https://docs.typebot.io/self-hosting/deploy/docker
wget https://raw.githubusercontent.com/baptisteArno/typebot.io/latest/docker-compose.yml
wget https://raw.githubusercontent.com/baptisteArno/typebot.io/latest/.env.example -O .env
openssl rand -base64 24 | tr -d '\n' ; echo
And then spin up TypeBot with:
docker-compose up -d
Typebot will be available at:
localhost:3000
ChatWoot
- ChatWoot with Docker - Mixed MIT License ❗
Quick Chatwoot Setup ⏬
# Download the env file template
wget -O .env https://raw.githubusercontent.com/chatwoot/chatwoot/develop/.env.example
# Download the Docker compose template
wget -O docker-compose.yaml https://raw.githubusercontent.com/chatwoot/chatwoot/develop/docker-compose.production.yaml
##Add password for postgres and Redis
#openssl rand -base64 12
#pwgen 16 1
nano .env
nano docker-compose.yml #modify also the UI port, to not be restricted to local host '3000:3000'
#add redit and postg pass
docker compose run --rm rails bundle exec rails db:chatwoot_prepare
docker compose up -d
ChatWoot available at:
localhost:3000
Make your own ChatWoot container:
git clone https://github.com/chatwoot/chatwoot.git
#https://github.com/chatwoot/chatwoot/tree/3558878ae2de44dc3fc9aad808beb1df9c8becd2
cd chatwoot
apt install make
time make docker
- Now you can have your Website Live chat - https://www.chatwoot.com/hc/user-guide/articles/1677580558-website-live-chat-settings-explained
- https://www.chatwoot.com/hc/user-guide/articles/1677580558-website-live-chat-settings-explained#business-hours-tab
- You will get a custom JS script to embed in your website
- You can also use it with Telegram:
/newbot #you will name it
and will get something like: random_number:random_string
- And there is Android App as well: https://play.google.com/store/apps/details?id=com.chatwoot.app&hl=es_419
FlowiseAI
FlowiseAI Project Details - which it is Apache v2 Licensed ✅
It uses LangChain (the JavaScript version) - https://github.com/langchain-ai/langchainjs - also MIT Licensed as the python one.
- It works out of the box for both, x86 and ARM64 💞
Quick FlowiseAI Setup ⏬
git clone https://github.com/FlowiseAI/Flowise
#https://github.com/FlowiseAI/Flowise/commit/7153093bfc8c30d7095ac747e9d6a43fbc804c5d
#git checkout 7153093bfc8c30d7095ac747e9d6a43fbc804c5d
cd ./Flowise/docker
cp .env.example .env
cat <<EOL >> .env
FLOWISE_USERNAME=jalcocert
FLOWISE_PASSWORD=youramazingpassword
EOL
Then, just spin FlowiseAI:
sudo docker-compose up -d
FlowiseAI is ready for you at: http://localhost:3000
How to Embed FlowiseAI
You will get also a MIT Licensed Widget on your Page
Dropdown Example 👇
<script type="module">
import Chatbot from 'https://cdn.jsdelivr.net/npm/flowise-embed/dist/web.js';
Chatbot.init({
chatflowid: '<chatflowid>',
apiHost: 'http://localhost:3000',
});
</script>
Or the full config with:
<script type="module">
import Chatbot from 'https://cdn.jsdelivr.net/npm/flowise-embed/dist/web.js';
Chatbot.init({
chatflowid: '91e9c803-5169-4db9-8207-3c0915d71c5f',
apiHost: 'http://localhost:3000',
chatflowConfig: {
// topK: 2
},
observersConfig: {
// (optional) Allows you to execute code in parent based upon signal observations within the chatbot.
// The userinput field submitted to bot ("" when reset by bot)
observeUserInput: (userInput) => {
console.log({ userInput });
},
// The bot message stack has changed
observeMessages: (messages) => {
console.log({ messages });
},
// The bot loading signal changed
observeLoading: (loading) => {
console.log({ loading });
},
},
theme: {
button: {
backgroundColor: '#3B81F6',
right: 20,
bottom: 20,
size: 48, // small | medium | large | number
dragAndDrop: true,
iconColor: 'white',
customIconSrc: 'https://raw.githubusercontent.com/walkxcode/dashboard-icons/main/svg/google-messages.svg',
autoWindowOpen: {
autoOpen: true, //parameter to control automatic window opening
openDelay: 2, // Optional parameter for delay time in seconds
autoOpenOnMobile: false, //parameter to control automatic window opening in mobile
},
},
tooltip: {
showTooltip: true,
tooltipMessage: 'Hi There 👋!',
tooltipBackgroundColor: 'black',
tooltipTextColor: 'white',
tooltipFontSize: 16,
},
chatWindow: {
showTitle: true,
showAgentMessages: true,
title: 'Flowise Bot',
titleAvatarSrc: 'https://raw.githubusercontent.com/walkxcode/dashboard-icons/main/svg/google-messages.svg',
welcomeMessage: 'Hello! This is custom welcome message',
errorMessage: 'This is a custom error message',
backgroundColor: '#ffffff',
backgroundImage: 'enter image path or link', // If set, this will overlap the background color of the chat window.
height: 700,
width: 400,
fontSize: 16,
starterPrompts: ['What is a bot?', 'Who are you?'], // It overrides the starter prompts set by the chat flow passed
starterPromptFontSize: 15,
botMessage: {
backgroundColor: '#f7f8ff',
textColor: '#303235',
showAvatar: true,
avatarSrc: 'https://raw.githubusercontent.com/zahidkhawaja/langchain-chat-nextjs/main/public/parroticon.png',
},
userMessage: {
backgroundColor: '#3B81F6',
textColor: '#ffffff',
showAvatar: true,
avatarSrc: 'https://raw.githubusercontent.com/zahidkhawaja/langchain-chat-nextjs/main/public/usericon.png',
},
textInput: {
placeholder: 'Type your question',
backgroundColor: '#ffffff',
textColor: '#303235',
sendButtonColor: '#3B81F6',
maxChars: 50,
maxCharsWarningMessage: 'You exceeded the characters limit. Please input less than 50 characters.',
autoFocus: true, // If not used, autofocus is disabled on mobile and enabled on desktop. true enables it on both, false disables it on both.
sendMessageSound: true,
// sendSoundLocation: "send_message.mp3", // If this is not used, the default sound effect will be played if sendSoundMessage is true.
receiveMessageSound: true,
// receiveSoundLocation: "receive_message.mp3", // If this is not used, the default sound effect will be played if receiveSoundMessage is true.
},
feedback: {
color: '#303235',
},
footer: {
textColor: '#303235',
text: 'Powered by',
company: 'Flowise',
companyLink: 'https://flowiseai.com',
}
},
},
});
</script>
Conclusions
Now you can include those free chatbots in your websites created with… yea, open source!
Which websites am I talking about? Free?
Thats right, you have many options to create your Website with Open Source:
- With Drag-n-Drop, the SelfHosted versions of: WordPress / Ghost / Grav
- For Developers, static websites made with SSG’s: NextJS / HUGO / Astro / With R
Whatever website and ChatBot you choose - combine it ⏬
Example with TypeBot:
https://docs.typebot.io/deploy/web/libraries/html-javascript
Popup window after 3 seconds:
<script type="module">
import Typebot from 'https://cdn.jsdelivr.net/npm/@typebot.io/[email protected]/dist/web.js'
Typebot.initPopup({
typebot: 'my-typebot',
apiHost: 'http://localhost:3001',
autoShowDelay: 3000,
})
</script>
It’s all about RAGs
There are several RAG frameworks out there, for example:
FAQ
How to Monitor the Status of your ChatBots
Free and Open Source No/Low Code Tools
-
NodeRed
-
ToolJet - https://github.com/ToolJet/ToolJet?ref=fossengineer.com (aGPL v3.0)
More about ToolJet and how to Set it up⏬
-
Low-code platform for building business applications. Connect to databases, cloud storages, GraphQL, API endpoints, Airtable, Google sheets, OpenAI, etc and build apps using drag and drop application builder. Built using JavaScript/TypeScript. 🚀
-
Visual App Builder: 45+ built-in responsive components, including Tables, Charts, Lists, Forms, and Progress Bars.
-
https://docs.tooljet.com/docs/setup/docker/?ref=fossengineer.com
docker run \
--name tooljet \
--restart unless-stopped \
-p 80:80 \
--platform linux/amd64 \
-v tooljet_data:/var/lib/postgresql/13/main \
tooljet/try:EE-LTS-latest
F/OSS Tools to Create Custom Agents
- You can also check Mem0, ex-EmbedChain
Quick EmbedChain Code ⏬
Quick FlowiseAI Setup ⏬
F/OSS AI Monitoring Tools
- https://github.com/openlit/openlit - Apache v2 Licensed ✅
Complete Observability and Evals for the Entire GenAI Stack, from LLMs to GPUs. Improve your LLM apps from playground to production
How to use OpenLit ⏬
git clone https://github.com/openlit/openlit
cd openlit
#git checkout fc56d05d93a7046335534e6fe9ccf57443f523b8
docker-compose up -d #modify it if your ports are busy already
OpenLit will be available at
localhost:3000
There is a Python SDK - https://github.com/openlit/openlit/tree/main/sdk/python // https://pypi.org/project/openlit/